If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=(x-2)(x-14)17=x^2-16x^45=x^2-10x+28-28
We move all terms to the left:
45-((x-2)(x-14)17)=0
We multiply parentheses ..
-((+x^2-14x-2x+28)17)+45=0
We calculate terms in parentheses: -((+x^2-14x-2x+28)17), so:We get rid of parentheses
(+x^2-14x-2x+28)17
We multiply parentheses
17x^2-238x-34x+476
We add all the numbers together, and all the variables
17x^2-272x+476
Back to the equation:
-(17x^2-272x+476)
-17x^2+272x-476+45=0
We add all the numbers together, and all the variables
-17x^2+272x-431=0
a = -17; b = 272; c = -431;
Δ = b2-4ac
Δ = 2722-4·(-17)·(-431)
Δ = 44676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44676}=\sqrt{36*1241}=\sqrt{36}*\sqrt{1241}=6\sqrt{1241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(272)-6\sqrt{1241}}{2*-17}=\frac{-272-6\sqrt{1241}}{-34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(272)+6\sqrt{1241}}{2*-17}=\frac{-272+6\sqrt{1241}}{-34} $
| 5x+8+6x+8=82,x | | 5x+8+6x+8=82,x | | 45=(x-2)(x-14)17=x^2-16x45=x^2-10x+28-28 | | -5x+2=9x | | 10x+9=6x+8 | | -x/2+5=-x/2 | | -x/2+5=-x/2 | | 56=-78.9-p | | 100-4q=40+2q | | 8p=24 | | 8p=24 | | 2(x-6)+2x=4(x+7)-40 | | 2(x=8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 |